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1 Introduction 

The Polynomial Beam Element Analysis Module (pBEAM) is a finite element code for beam-like structures. The 
methodology uses Euler-Bernoulli beam elements with 12 degrees of freedom (3 translation and 3 rotational at 
each end of the element). The basic theory is described in Yang (1986). A unique feature of the code is that section 
properties can be described as polynomials of any order between nodes (e.g., EIxx could vary quarticly across an 
element). This allows for higher fidelity in describing variation in structural properties, which means higher accuracy 
can be achieved with fewer elements. The use of polynomials also allows for higher accuracy because integrals and 
derivatives are evaluated analytically rather than numerically and have greater flexibility in extending the code by 
using higher-order shape functions. 

pBEAM was originally written to analyze tower/monopiles and rotor blades of wind turbines; however, the approach 
is general enough to be used for any beam-like structure. pBEAM is written in C++ and can be used directly in 
C++ or imported as a Python module. The Python module exposes the full class structure of the finite element code, 
allowing for flexible usage in a object-oriented scripting environment, while the analysis retains the speed advantage 
of compiled C++. If desired the C++ code could easily be adapted to run as a stand-alone command-line executable 
that reads data from an input file; however, that type of usage is not included. 

pBEAM can estimate structural mass, deflections in all degrees of freedom, coupled natural frequencies, critical 
global axial buckling loads, and axial stress/strain. All inputs and outputs are given about the elastic center and in 
principal axes in order to remove cross-coupling terms. Any arbitrary definition of the structural properties can be 
translated to the elastic center and rotated to the principal axes (see Hansen (2008) for example). 
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2 Installation 

Prerequisites 

C++ compiler, Boost C++ Libraries: specifically boost_python-mt, boost_system-mt (and boost_unit_test_framework
mt if you want to run the unit tests), LAPACK, NumPy, and SciPy 

Download either pBEAM.py-0.1.0.tar.gz or pBEAM.py-0.1.0.zip, and uncompress/unpack it. 

Install pBEAM with the following command. 

$ python setup.py install 

To verify that the installation was successful, run Python from the command line, 

$ python 

and import the module. If no errors are issued, the installation was successful. 

>>> import _pBEAM 

pBEAM has a large range of unit tests, but they are only accessible through C++. These tests verify the integrity of 
the underlying C++ code for development purposes. If you want to run the tests, change the working directory to 
src/twister/rotorstruc/pBEAM and run 

$ make test CXX=g++ 

where the name of your C++ compiler should be inserted in the place of g++. The script will build the test exe
cutable and run all tests. The phrase “No errors detected” signifies that all the tests passed. 

To access an HTML version of this documentation, which contains further details and links to the source code, open 
docs/index.html. 
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3 Tutorial 

Two examples are included in this section. The first example provides the sectional properties and assumes a linear 
variation between the sections (see matching constructor). The example simulates a blade for the NREL 5-MW 
reference model. The second example uses the convenience constructor for a beam with cylindrical shell sections 
(see matching constructor). The example simulates the tower for the NREL 5-MW refernece model. A third con

structor is available for more advanced usage and allows for arbitrary polynomial variation in section properties. 
This advanced constructor is not demonstrated in these examples, but details are available in the :ref:‘documentation 
<documentation-label>. 

3.1 Linear Variation 
This example simulates a rotor blade from the NREL 5-MW reference model in pBEAM. First, the relevant modules 
are imported. 

import numpy as np  
import matplotlib.pyplot as plt  

import _pBEAM 

Next, we define the stiffness and inertial properties. The stiffness and inertial properties can be computed from the 
structural layout of the blade using a code like PreComp. Section properties are defined using the SectionData class. 

# stiffness / inertial properties 

r = np.array([1.501, 1.803, 1.902, 2, 2.105, 2.203, 2.302, 2.868, 3.003, 3.102, 
5.607, 7.005, 8.34, 10.51, 11.76, 13.51, 15.86, 18.52, 19.97, 
22.02, 24.07, 26.12, 28.17, 32.28, 33.53, 36.39, 38.53, 40.49, 
42.54, 43.54, 44.59, 46.54, 48.7, 52.8, 56.22, 58.95, 61.69, 63.06]) 

EA = np.array([1.626e+10, 1.65e+10, 1.677e+10, 1.685e+10, 1.694e+10, 1.702e+10, 
1.625e+10, 1.208e+10, 1.212e+10, 1.23e+10, 1.228e+10, 1.199e+10, 
1.16e+10, 8.27e+09, 8.035e+09, 8.42e+09, 8.754e+09, 8.972e+09, 
9.058e+09, 9.128e+09, 9.122e+09, 8.947e+09, 8.747e+09, 8.295e+09, 
8.088e+09, 7.532e+09, 7.09e+09, 6.645e+09, 6.079e+09, 5.809e+09, 
5.515e+09, 4.955e+09, 4.353e+09, 3.186e+09, 2.221e+09, 1.503e+09, 
9.426e+08, 7.459e+08]) 

EI11 = np.array([2.352e+10, 2.352e+10, 2.491e+10, 2.491e+10, 2.491e+10, 2.491e+10, 
2.372e+10, 1.659e+10, 1.751e+10, 1.821e+10, 1.456e+10, 1.336e+10, 
1.065e+10, 4.918e+09, 4.769e+09, 4.331e+09, 4.044e+09, 3.423e+09, 
3.167e+09, 2.873e+09, 2.572e+09, 1.969e+09, 1.58e+09, 1.296e+09, 
1.101e+09, 7.37e+08, 6.386e+08, 5.837e+08, 4.358e+08, 3.622e+08, 
3.096e+08, 2.541e+08, 2.034e+08, 1.22e+08, 7.101e+07, 3.817e+07, 
7.727e+06, 3.664e+06]) 

EI22 = np.array([2.307e+10, 2.307e+10, 2.328e+10, 2.328e+10, 2.328e+10, 2.328e+10, 
2.217e+10, 1.555e+10, 1.524e+10, 1.495e+10, 1.848e+10, 1.69e+10, 
1.342e+10, 6.219e+09, 5.231e+09, 5.255e+09, 5.286e+09, 4.943e+09, 
4.699e+09, 4.421e+09, 4.142e+09, 3.674e+09, 3.241e+09, 2.603e+09, 
2.397e+09, 1.995e+09, 1.756e+09, 1.558e+09, 1.292e+09, 1.215e+09, 
1.107e+09, 9.199e+08, 7.931e+08, 5.797e+08, 4.296e+08, 3.009e+08, 
9.361e+07, 4.69e+07]) 

GJ = np.array([1.079e+10, 1.128e+10, 1.182e+10, 1.199e+10, 1.217e+10, 1.234e+10, 
1.192e+10, 8.915e+09, 9.135e+09, 9.261e+09, 7.303e+09, 4.995e+09, 
2.821e+09, 5.891e+08, 4.595e+08, 4.022e+08, 3.556e+08, 2.913e+08, 
2.697e+08, 2.414e+08, 2.157e+08, 1.689e+08, 1.415e+08, 1.191e+08, 
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1.019e+08, 7.086e+07, 6.037e+07, 5.437e+07, 4.033e+07, 3.455e+07, 
3.002e+07, 2.53e+07, 2.128e+07, 1.433e+07, 9.588e+06, 6.455e+06, 
4.335e+06, 3.017e+06]) 

rhoA = np.array([1086, 1102, 1121, 1126, 1132, 1137, 1086, 878.6, 891.2, 896.1, 
730.2, 608.9, 559.4, 337.1, 332.3, 333.3, 331.2, 324.2, 320.7, 
315, 308, 271.6, 261.2, 244.8, 237, 218.2, 206.2, 194.8, 157, 
151, 144.5, 133.1, 122.1, 100.6, 82.32, 67.6, 46.81, 31.18]) 

rhoJ = np.array([2778, 2905, 3048, 3092, 3139, 3184, 3075, 2415, 2532, 2566, 
2119, 1595, 1255, 576.9, 558, 554.2, 534, 488.8, 467.5, 436.7, 
404.6, 331.1, 295.2, 243.2, 222.8, 180.2, 155.6, 135.1, 92.91, 
85.2, 76.85, 63.57, 52.86, 35.45, 23.82, 16.32, 8.66, 6.038]) 

# number of sections 
nsec = len(r) 

p_section = _pBEAM.SectionData(nsec, r, EA, EI11, EI22, GJ, rhoA, rhoJ) 

Distributed loads can be computed from an aerodynamics code like CCBlade. This example includes only distributed 
loads, which are defined in Loads. 

# distributed loads 

P1 = np.array([106.8, 487.3, 604.7, 715.4, 826.2, 923.1, 1007, 1299, 1326, 
1343, 1440, 1337, 1108, -1252, -2185, -2017, -1736, -1727, 
-1718, -1698, -1665, -1419, -1131, -1051, -937, -673.4, 
-643.8, -617, -553.7, -524.2, -504.1, -484.4, -462.8, 
-417, -374.3, -336.6, -295.3, -0.01844]) 

P2 = np.array([452.4, 2064, 2561, 3030, 3499, 3909, 4263, 5499, 5612,  
5686, 6098, 5291, 4690, 1.938e+04, 2.563e+04, 2.492e+04,  
2.387e+04, 2.346e+04, 2.308e+04, 2.202e+04, 2.097e+04,  
2.021e+04, 1.959e+04, 1.865e+04, 1.844e+04, 1.796e+04,  
1.734e+04, 1.668e+04, 1.592e+04, 1.556e+04, 1.518e+04,  
1.452e+04, 1.379e+04, 1.23e+04, 1.096e+04, 9802, 8552,  
13.34])  

P3 = np.array([-1.065e+04, -1.081e+04, -1.098e+04, -1.104e+04, -1.109e+04, 
-1.114e+04, -1.064e+04, -8611, -8734, -8782, -7156, -5967, 
-5482, -3303, -3256, -3267, -3246, -3177, -3143, -3087, 
-3019, -2662, -2560, -2399, -2323, -2138, -2021, -1909, 
-1539, -1480, -1416, -1305, -1197, -985.7, -806.8, -662.5, 
-458.7, -305.5]) 

p_loads = _pBEAM.Loads(nsec, P1, P2, P3) # only distributed loads 

The tip/base data is defined with a free end in TipData and a rigid base for BaseData. The blade object is then 
assembled using the Beam constructor that assumes linear variation in properties between sections. 

# tip/base data  
p_tip = _pBEAM.TipData() # no tip mass  
k = np.array([float(’inf’), float(’inf’), float(’inf’),  

float(’inf’), float(’inf’), float(’inf’)])  
p_base = _pBEAM.BaseData(k, float(’inf’)) # rigid base  
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# create blade object 
blade = _pBEAM.Beam(p_section, p_loads, p_tip, p_base) 

The constructed blade object can now be used for various computations. For example, the mass and the first five 
natural frequencies 

# compute mass and natural frequncies 
print ’mass =’, blade.mass()  
print ’natural freq =’, blade.naturalFrequencies(5)  

which result in 

>>> mass = 17170.0189  
>>> natural freq = [ 0.90910346 1.13977516 2.81855826 4.23836926 6.40037864]  

Figure 1 shows a plot of the blade displacement in the second principal direction generated from the following 
commands. 

# plot displacement in second principal direction (approximately flapwise direction) 
disp = blade.displacement()  
dy = disp[1]  
plt.plot(r, dy)  
plt.xlabel(’r (m)’)  
plt.ylabel(’$\delta y$ (m)’)  
# plt.show() 

Figure 1. Blade deflection along span in flapwise direction. 

Figure 2 shows a plot of the strain along the blade at the location of maximum airfoil thickness on both the pressure 
and suction side of the airfoil. 

# evaluate strain at location of max airfoil thickness (upper and lower surface) 
xpt = np.array([-0.02676, -0.02716, 0.009337, 0.009381, 0.009428, 0.009472, 

0.009515, -0.02336, 0.01155, 0.01219, -0.1379, -0.2207, -0.4827, 
-0.5969, -0.63, -0.6355, -0.6947, -0.6163, -0.6085, -0.5971, 
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-0.5857, -0.5064, -0.4283, -0.3977, -0.3872, -0.3107, -0.2956,  
-0.2811, -0.212, -0.2087, -0.2012, -0.1864, -0.1791, -0.1669,  
-0.1599, -0.1587, -0.1586, -0.1559, -0.02725, -0.02765, 0.00883,  
0.008872, 0.008916, 0.008958, 0.008999, -0.02389, 0.01102,  
0.01165, -0.1384, -0.2211, -0.4831, -0.5972, -0.6303, -0.6357,  
-0.695, -0.6165, -0.6088, -0.5973, -0.5859, -0.5066, -0.4285,  
-0.3979, -0.3874, -0.3108, -0.2957, -0.2813, -0.2121, -0.2088,  
-0.2013, -0.1865, -0.1792, -0.167, -0.16, -0.1588, -0.1586, -0.1559])  

ypt = np.array([1.63, 1.654, 1.686, 1.694, 1.702, 1.71, 1.718, 1.738, 1.773, 1.779, 
1.665, 1.465, 1.253, 0.9807, 0.8931, 0.8325, 0.7735, 0.7064, 0.6822, 
0.6488, 0.6125, 0.545, 0.4985, 0.4701, 0.4415, 0.3727, 0.354, 
0.3417, 0.3047, 0.2843, 0.2697, 0.2551, 0.2419, 0.2138, 0.1895, 
0.1694, 0.1488, 0.1382, -1.63, -1.654, -1.686, -1.694, -1.703, 
-1.711, -1.718, -1.738, -1.774, -1.78, -1.674, -1.482, -1.287, 
-1.022, -0.9412, -0.89, -0.8412, -0.7795, -0.7559, -0.7211, -0.6782, 
-0.5917, -0.5272, -0.4972, -0.4647, -0.3841, -0.3647, -0.3522, 
-0.3056, -0.2824, -0.2651, -0.2505, -0.2371, -0.208, -0.1823, 
-0.1605, -0.137, -0.1247]) 

zpt = np.array([1.501, 1.803, 1.902, 2, 2.105, 2.203, 2.302, 2.868, 3.003, 3.102, 
5.607, 7.005, 8.34, 10.51, 11.76, 13.51, 15.86, 18.52, 19.97, 
22.02, 24.07, 26.12, 28.17, 32.28, 33.53, 36.39, 38.53, 40.49, 
42.54, 43.54, 44.59, 46.54, 48.7, 52.8, 56.22, 58.95, 61.69, 
63.06, 1.501, 1.803, 1.902, 2, 2.105, 2.203, 2.302, 2.868, 3.003, 
3.102, 5.607, 7.005, 8.34, 10.51, 11.76, 13.51, 15.86, 18.52, 
19.97, 22.02, 24.07, 26.12, 28.17, 32.28, 33.53, 36.39, 38.53, 
40.49, 42.54, 43.54, 44.59, 46.54, 48.7, 52.8, 56.22, 58.95, 
61.69, 63.06]) 

strain = blade.axialStrain(len(xpt), xpt, ypt, zpt)  
nstrain = len(strain)/2  
plt.figure()  
plt.plot(r, strain[:nstrain], label=’suction side’)  
plt.plot(r, strain[nstrain:], label=’pressure side’)  
plt.xlabel(’r (m)’)  
plt.ylabel(’$\epsilon$’)  
plt.legend()  
plt.xlim([0, 63.0])  
# plt.show() 
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Figure 2. Strain along span at location of maximum airfoil thickness. 

3.2 Cylindrical Shell Sections 
This example simulates the tower from the NREL 5-MW reference model in pBEAM. First, the relevant modules are 
imported 

import numpy as np  
from math import pi  
import matplotlib.pyplot as plt  

import _pBEAM 

The basic tower geometry is defined 

# tower geometry defintion 
z0 = [0, 30.0, 73.8, 117.6] # heights starting from bottom (m) 
d0 = [6.0, 6.0, 4.935, 3.87] # corresponding diameters (m) 
t0 = [0.0351, 0.0351, 0.0299, 0.0247] # corresponding shell thicknesses (m) 
n0 = [5, 5, 5] # number of finite elements per section 

and then discretized so that it is defined at the end of every element (for convenience, a discretized definition could 
be supplied up front). 

# discretize 
nodes = int(np.sum(n0)) + 1 # C++ interface requires int 

z = np.zeros(nodes)  
start = 0  
for i in range(len(n0)):  

z[start:start+n0[i]+1] = np.linspace(z0[i], z0[i+1], n0[i]+1) 
start += n0[i] 

d = np.interp(z, z0, d0)  
t = np.interp(z, z0, t0)  
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The cylindrical shell model only allows for isotropic material properties. 

# material properties 

E = 210e9 # elastic modulus (Pa)  
G = 80.8e9 # shear modulus (Pa)  
rho = 8500.0 # material density (kg/m^3)  

material = _pBEAM.Material(E, G, rho) 

Distributed loads in this example come from wind loading and the tower’s weight. 

# distributed loads 

g = 9.81 # gravity 

# wind loading in x-direction 
Px = np.array([0.0, 133.18, 167.41, 191.71, 211.09, 227.42, 236.04, 240.30, 

241.36, 239.92, 236.47, 231.37, 224.95, 217.64, 209.33, 200.16]) 
Py = np.zeros_like(Px) 
Pz = -rho*g*(pi*d*t) # self-weight 

loads = _pBEAM.Loads(nodes, Px, Py, Pz) 

Contributions from the rotor-nacelle-assembly (RNA) include mass, moments of inertia, and transfered forces/mo
ments. These are added using the TipData class. 

# RNA contribution 

m = 300000.0 # mass 
cm = np.array([-5.0, 0.0, 0.0]) # center of mass relative to tip 
I = np.array([2960437.0, 3253223.0, 3264220.0, 0.0, -18400.0, 0.0]) # moments of inertia 
F = np.array([750000.0, 0.0, -m*g]) # force 
M = np.array([0.0, 0.0, 0.0]) # moment 

tip = _pBEAM.TipData(m, cm, I, F, M) 

The base of the tower is assumed to be rigidly mounted in this example. This corresponds to BaseData being initial
ized with infinite stiffness in all directions. 

# rigid base 

inf = float(’inf’)  
k = np.array([inf]*6)  

base = _pBEAM.BaseData(k, inf) 

Finally, the tower object is created using the cylindrical shell constructor. 

# create tower object 

tower = _pBEAM.Beam(nodes, z, d, t, loads, material, tip, base) 

Relevant properties can now be computed from this object in the same manner as in the previous example. 
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4 Module Documentation 

This documentation only details the outward facing classes that are available through the Python module. Other 
classes and methods are available through the C++ implementation; however, they primarily encapsulate implemen
tation details not necessary for external use. For details on use through C++, refer to the source code and examples in 
the test suite. The main class in the pBEAM module is Beam. All other classes are only helper objects used as inputs 
to the Beam object. 

The HTML version of this documentation is better suited to view the code documentation and contains details on the 
methods contained in the Beam class as well as hyperlinks to the source code. 

4.1 Beam 
Beam is the main class for pBEAM and defines the complete beam object. Three constructors are provided: a con
venience constructor for a beam with cylindrical shell sections and isotropic material (e.g., a wind turbine tower), 
a constructor for general sections that very linearly between sections, and a constructor where properties vary as 
polynomials across elements. 

Class Summary: 

class _pBEAM.Beam(nodes, z, d, t, loads, mat, tip, base) 
A convenience constructor for a beam with cylindrical shell sections and isotropic material (e.g., a wind 
turbine tower) 

Parameters  
nodes : int  

number of nodes 

z : ndarray [nodes] (m)  

location of beam sections starting from base and ending at tip  

d : ndarray [nodes] (m)  

diameter of beam at each z-location  

t : ndarray [nodes] (m)  

shell thickness of beam at each z-location  

loads : Loads  

loads along beam  

material : Material  

isotropic material properties  

tip : TipData  

properties of offset tip mass  

base : BaseData  

properties of base stiffness boundary condition  

class _pBEAM.Beam(section, loads, tip, base) 
A beam with general section properties with linear variation between nodes. 
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Parameters  
section : SectionData  

section data (inertial and stiffness properties) along beam  

loads : Loads  

loads along beam  

tip : TipData  

properties of offset tip mass  

base : BaseData  

properties of base stiffness boundary condition  

class _pBEAM.Beam(section, loads, tip, base, flag) 
A beam with general section properties with polynomial variation between nodes. 

Parameters 
section : PolySectionData 

polynomial section data (inertial and stiffness properties) along beam 

loads : PolyLoads 

polynomial loads along beam 

tip : TipData 

properties of offset tip mass 

base : BaseData 

properties of base stiffness boundary condition 

flag : int 

can be set to any value, just a flag to allow use of polynomial variation rather than the 
overloaded constructor above that uses linear variation 

Table 1. Methods available for Beam objects. 

mass() mass of beam 

naturalFrequencies(n) first n natural frequencies 

naturalFrequenciesAndEigenvectors(n) first n natural frequencies and eigenvectors 

displacement() 6 DOF displacement at each node 

criticalBucklingLoads() global minimum critical axial buckling loads 

axialStrain(n, x, y, z) axial strain along beam 

outOfPlaneMomentOfInertia() out of plane moment of inertia 

4.2 SectionData 
SectionData is a C++ struct that defines the section properties along the beam, assuming a linear variation in proper
ties between the defined sections. For polynomial variation, see PolySectionData. 
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Class Summary: 

class _pBEAM.SectionData(n, z, EA, EIxx, EIyy, GJ, rhoA, rhoJ) 
Section data defined along the structure from base to tip. 

Parameters 
n : int  

number of sections where data is defined (nodes)  

z : ndarray [n] (m)  

location of beam sections starting from base and ending at tip  

EA : ndarray [n] (N)  

axial stiffness at each section  

EIxx : ndarray [n] (N*m**2)  

bending stiffness about +x-axis  

EIyy : ndarray [n] (N*m**2)  

bending stiffness about +y-axis  

GJ : ndarray [n] (N*m**2)  

torsional stiffness about +z-axis  

rhoA : ndarray [n] (kg/m)  

mass per unit length  

rhoJ : ndarray [n] (kg*m)  

polar mass moment of inertia per unit length  

Notes 

All parameters must be specified about the elastic center and in principal axis (i.e., EIxy, Sx, and Sy are all 
zero). Linear variation in properties between sections is assumed. 

4.3 PolySectionData 
PolySectionData is a C++ struct that defines the section properties along the beam, and allows for polynomial varia
tion of properties between the defined sections. For linear variation, SectionData is simpler to work with. 

Class Summary: 

class _pBEAM.PolySectionData(nodes, z, nA, nI, EA, EIxx, EIyy, GJ, rhoA, rhoJ) 
Polynomial section data defined along the structure from base to tip. 

Parameters 
n : int  

number of sections where data is defined (nodes)  

z : ndarray [n] (m) 
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location of beam sections starting from base and ending at tip 

nA : ndarray(int) [n - 1] 

nA[i] is the order of the polynomial describing structural properties between nodes i 
and i + 1 for properties that are area dependent (EA, rhoA) 

nI : ndarray(int) [n - 1] 

nI[i] is the order of the polynomial describing structural properties between nodes i 
and i + 1 for properties that are moment of inertia dependent (EIxx, EIyy, GJ, rhoJ) 

EA : list(ndarray) [n - 1] (N) 

EA[i] is a polynomial of length nA[i] that describes the axial stiffness between nodes i 
and i + 1 

EIxx : list(ndarray) [n - 1] (N*m**2) 

EIxx[i] is a polynomial of length nI[i] that describes the bending stiffness about +x
axis between nodes i and i + 1 

EIyy : list(ndarray) [n - 1] (N*m**2) 

EIyy[i] is a polynomial of length nI[i] that describes the bending stiffness about +y-
axis between nodes i and i + 1 

GJ : list(ndarray) [n - 1] (N*m**2) 

GJ[i] is a polynomial of length nI[i] that describes the torsional stiffness about +z-axis 
between nodes i and i + 1 

rhoA : list(ndarray) [n - 1] (kg/m) 

rhoA[i] is a polynomial of length nA[i] that describes the mass per unit length between 
nodes i and i + 1 

rhoJ : list(ndarray) [n - 1] (kg*m) 

rhoJ[i] is a polynomial of length nI[i] that describes the polar mass moment of inertia 
per unit length between nodes i and i + 1 

Notes 

All parameters must be specified about the elastic center and in principal axis (i.e., EIxy, Sx, and Sy are all 
zero). Polynomials are expressed as: 

EA[i] = [5.0, 3.0, 2.0] which means EA[i] = 5.0h2 +3.0h +2.0 

where h is a normalized coordinate s.t. it equals 0 at the base of the given element and 1 at the top of the 
element. The numpy polynomial class (numpy.poly1d) is useful for multiplying polynomials, etc. 

4.4 Loads 
Loads is a C++ struct that defines the applied loads along the beam. Three constructors are provided: beams with 
no external loads, beams with only distributed loads, and beams with distributed loads and point forces/moments. 
Distributed loads are assumed to vary lineary between sections. For polynomial variation in distributed loads, see 
PolyLoads. 
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Class Summary: 

class _pBEAM.Loads 
No applied external loads. 

class _pBEAM.Loads(n, Px, Py, Pz) 
Distributed loads along beam from base to tip. 

Parameters 
n : int 

number of sections where forces are defined (nodes) 

Px : ndarray [n] (N/m) 

force per unit length along beam in the x-direction 

Py : ndarray [n] (N/m) 

force per unit length along beam in the y-direction 

Pz : ndarray [n] (N/m) 

force per unit length along beam in the z-direction 

Notes 

Loads must be given at the corresponding z locations defined in SectionData or PolySectionData. 

class _pBEAM.Loads(n, Px, Py, Pz, Fx, Fy, Fz, Mx, My, Mz) 
Distributed loads and applied point forces/moments along beam from base to tip. 

Parameters 
n : int 

number of sections where forces are defined (nodes) 

Px : ndarray [n] (N/m) 

force per unit length along beam in the x-direction 

Py : ndarray [n] (N/m) 

force per unit length along beam in the y-direction 

Pz : ndarray [n] (N/m) 

force per unit length along beam in the z-direction 

Fx : ndarray [n] (N) 

point forces in the x-direction 

Fy : ndarray [n] (N) 

point forces in the y-direction 

Fz : ndarray [n] (N) 

point forces in the z-direction 

Mx : ndarray [n] (N*m)  

point moments in the x-direction  
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My : ndarray [n] (N*m)  

point moments in the y-direction  

Mz : ndarray [n] (N*m)  

point moments in the z-direction  

Notes 

Loads must be given at the corresponding z locations defined in SectionData or PolySectionData. 

4.5 PolyLoads 
PolyLoads is a C++ struct that defines the applied loads along the beam and allows for polynomial variation of loads 
between the defined sections. For linear variation in distributed loads, Loads is simpler to work with. 

Class Summary: 

class _pBEAM.PolyLoads(n, nP, Px, Py, Pz, Fx, Fy, Fz, Mx, My, Mz) 
Polynomial variation in distributed loads, and point forces/moments defined along the structure from base to 
tip. 

Parameters 
n : int 

number of sections where loads are defined (nodes) 

nP : ndarray(int) [n - 1] 

nP[i] is the order of the polynomial describing the distributed load between nodes i 
and i + 1 

Px : list(ndarray) [n - 1] (N) 

Px[i] is a polynomial of length nP[i] that describes the force per unit length in the 
+x-direction between nodes i and i + 1 

Py : list(ndarray) [n - 1] (N) 

Py[i] is a polynomial of length nP[i] that describes the force per unit length in the 
+y-direction between nodes i and i + 1 

Pz : list(ndarray) [n - 1] (N) 

Pz[i] is a polynomial of length nP[i] that describes the force per unit length in the 
+z-direction between nodes i and i + 1 

Fx : ndarray [n] (N) 

point forces in the x-direction 

Fy : ndarray [n] (N) 

point forces in the y-direction 

Fz : ndarray [n] (N)  

point forces in the z-direction  
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Mx : ndarray [n] (N*m)  

point moments in the x-direction  

My : ndarray [n] (N*m)  

point moments in the y-direction  

Mz : ndarray [n] (N*m)  

point moments in the z-direction  

Notes 

Polynomials are expressed as: 

Px[i] = [5.0, 3.0, 2.0], which means Px[i] = 5.0h2 +3.0h +2.0 

where h is a normalized coordinate s.t. it equals 0 at the base of the given element and 1 at the top of the 
element. The numpy polynomial class (numpy.poly1d) is useful for multiplying polynomials, etc. 

Loads must be given at the corresponding z locations defined in SectionData or PolySectionData 

4.6 BaseData 
BaseData is a C++ struct that defines the stiffness properties of the base of the beam. Two constructors are available: 
a convenience constructor for a free-end, and a general constructor for specifying the equivalent spring stiffness in all 
6 DOF. 

Class Summary: 

class _pBEAM.BaseData 
A free-end. External spring stiffness is zero in all directions. 

class _pBEAM.BaseData(k, infinity) 
A base with equivalent external spring stiffness applied. 

Parameters 
k : ndarray (N/m) 

stifness at base [k_xx, k_txtx, k_yy, k_tyty, k_zz, k_tztz] where tx is the rotational 
direction theta_x and so forth 

infinity : float (N/m) 

a value that represents infinity (can be any arbitrary float but it is convenient to use 
Python’s float(’inf’)). used to denote infinitely rigid directions. 

4.7 TipData 
TipData is a C++ struct that defines the properties of the offset tip mass. Two constructors are available: a conve
nience constructor for a beam with no offset tip mass, and a general constructor for specifying the properties of the 
offset tip mass. 
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Class Summary: 

class _pBEAM.TipData 
No offset tip mass. 

class _pBEAM.TipData(m, cm, I, F, M) 
Used to model an offset tip mass (e.g., rotor/nacelle/assembly on top of a wind turbine tower) 

Parameters 
m : float (kg)  

mass of object  

cm : ndarray (m) 

location of object’s center of mass relative to beam tip [x, y, z] 

I : ndarray (m^4) 

area moment of inertia of object about beam tip [Ixx, Iyy, Izz, Ixy, Ixz, Iyz] 

F : ndarray (N) 

applied force from the object onto the beam tip [Fx, Fy, Fz] 

M : ndarray (N*m) 

applied moment from the object onto the beam tip [Mx, My, Mz] 

4.8 Material 
Material is a C++ struct that defines the material properties for an isotropic material. 

Class Summary: 

class _pBEAM.Material(E, G, rho) 
Material properties for an isotropic material. 

Parameters 
E : float (N/m**2)  

modulus of elasticity  

G : float (N/m**2)  

shear modulus  

rho : float  

mass density (kg/m**3)  
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5 Theory 

The methodology details are available in Yang (1986). Usage differs here only in that rather than using precomputed 
matrices for an assumed variation in structural properties, a polynomial representation is assumed that allows for 
more flexible usage and exact polynomial integration. 

Table 2. Nomenclature for symbols used in this section. 

symbol definition 

K stiffness matrix 

M inertia matrix or moment 

N incremental stiffness matrix 

q displacement vector 

F force vector 

h nondimensional coordinate along element 

L length of element 

r mass density 

m mass 

A cross-sectional area 

I area moment of inertia 

J polar area moment of inertia 

E modulus of elasticity 

G shear modulus of elasticity 

f shape function 

v velocity vector 

w angular velocity vector 

V shear force 

5.1 Finite Element Matrices 
The governing equation of the structure is given by 

Kq+ Mq̈ = F 

and for buckling analysis 

[K - N]q = F 

The finite element matrices are computed from the structural properties of the beam. As mentioned earlier, pBEAM 
uses a polynomial representation of the structural properties. All polynomials are defined across an element in 
normalized coordinates (h). For example, the moment of inertia across an element may vary quadratically as I2h2 + 
I1h + I0. Computation of the finite element matrices are described below, where all derivatives are with respect to h . 
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axial stiffness matrix:

K

i j

=
1
L

Z 1

0
EA(h) f

0
i

(h) f

0
j

(h)dh

axial inertia matrix:
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Torsional matrices are computed similarly to the axial matrices, except EA(h) is replaced with GJ(h) and rA(h) is
replaced with rJ(h). Note that although the same notation was used, the axial shape functions are not the same as
those for bending. Because section properties are defined as polynomials, each of these derivatives and integrals are
done analytically.

5.2 Top Mass

pBEAM assumes that the top of the beam is a free end, but that a mass may exist on top of the beam. This is useful
for modeling structures such as an RNA (rotor/nacelle/assembly) on top of a wind turbine tower. The top mass is
assumed to be a rigid body with respect to the main beam and thus, does not contribute to the stiffness matrix. It
does, however, affect the inertial loading and external forces as discussed below. The top mass can be offset from the
beam top by some vector r . Although idealized as a point mass, its moment of inertia matrix can also be specified.
The tip is both translating and rotating, so the velocity of the tip mass in an inertial reference frame is given by (with
reference to the variables in Figure 3):
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Using the Lagrangian one can show that
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Figure 3. Diagram of top mass idealized as a point mass with moments of iner-

tia. The center of mass of the top mass is offset by vector r relative to the top

of the beam. The top of the beam is also potentially translating and rotating.

After taking the derivatives, the inertial matrix contribution from the top mass is given by
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where q = [x,q
x

,y,q
y

,z,q
z

]. Note that the current implementation assumes moments of inertia are given about
the beam tip, though moments of inertia about its own center of mass are easily translated to the beam tip via the
generalized parallel axis theorem.

Finally, the top mass may also apply loads (forces and moments) to the beam. These are simply added to the force
vector at the tip of the structure. It is assumed that the weight of the top mass was already added to the force vector.

5.3 Base

The bottom of the beam is assumed to be constrained by linear springs in all 6 coordinate directions. Any of these
springs can be chosen to be infinitely stiff, or in other words, rigidly constrained in that direction. This simply adds
a diagonal stiffness matrix at the bottom of the beam, and directions that are rigid are removed from the structural
matrices.
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5.4 Loads

Distributed loads, point forces, and point moments can be specified anywhere in the structure. Distributed loads are
specified as polynomials across the elements. For distributed loads in the lateral directions, work equivalent loads are
computed at the nodes. Axially distributed loads are integrated starting from the free end of the beam to compute the
polynomial variation in axial force.

5.5 Axial Stress

The computation of axial stress is separate from the finite element analysis, but is included in this code for conve-
nience. First, the forces and moments must be computed along the beam. For example the shear force and moments
are evaluated as

V

i

= V

i+1(0)+F

pt

i+1 +(z
i+1 � z

i

)
Z 0

1
q(h)dh

M

i
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i

)
Z 0

1
V

i

(h)dh

where F

pt

and M

pt

are external point forces and moments along the structure. Note that the integration is actually an
indefinite integral, but limits are noted to signify that integration must be done from the tip where forces/moments
are known. Finally, the stress is computed as (or use E(x,y) = 1 to compute strain):
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